- CLARE LOHRMANN, University of Colorado Boulder, USA
- MARIA STULL, University of Colorado Boulder, USA
- ALESSANDRO RONCONE, University of Colorado Boulder, USA
- BRADLEY HAYES, University of Colorado Boulder, USA

9 For humans to effectively work with robots, they must be able to predict the actions and behaviors of their 10 robot teammates rather than merely react to them. While there are existing techniques enabling robots to adapt to human behavior, there is a demonstrated need for methods that explicitly improve humans' ability to 11 understand and predict robot behavior at multi-task timescales. In this work, we propose a method leveraging 12 the innate human propensity for pattern recognition in order to improve team dynamics in human-robot teams 13 and to make robots more predictable to the humans that work with them. Patterns are a cognitive tool that 14 humans use and rely on often, and the human brain is in many ways primed for pattern recognition and usage. 15 We propose Pattern-Aware Convention-setting for Teaming (PACT), an entropy-based algorithm that identifies 16 and imposes appropriate patterns over a robot's planner or policy over long time horizons. These patterns are 17 autonomously generated and chosen via an algorithmic process that considers human-perceptible features 18 and characteristics derived from the tasks to be completed, and as such, produces behavior that is easier for 19 humans to identify and predict. Our evaluation shows that PACT contributes to significant improvements 20 in team dynamics and teammate perceptions of the robot, as compared to robots that utilize traditionally 21 'optimal' plans and robots utilizing unoptimized patterns.

CCS Concepts: • Human-centered computing → Collaborative and social computing; Empirical studies in collaborative and social computing;

25 Additional Key Words and Phrases: collaboration, conventions, patterns, predictability

²⁶ ACM Reference Format:

Clare Lohrmann, Maria Stull, Alessandro Roncone, and Bradley Hayes. 2023. Generating Pattern-Based
 Conventions for Predictable Planning in Human-Robot Collaboration. *ACM Trans. Hum.-Robot Interact.* 0, 0,
 Article 0 (2023), 23 pages. https://doi.org/XXXXXXXXXXXX

1 INTRODUCTION

Human difficulty with accurately modeling and predicting robot behaviors prevents the integration of robots into human-populated environments. Prior work indicates that the more effectively a human can model their robot teammate, the better the team will be able to perform [32]. However, humans struggle to build accurate and effective models of robots [5, 24] and often find them

Authors' addresses: Clare Lohrmann, clare.lohrmann@colorado.edu, University of Colorado Boulder, 1111 Engineering Dr,
 Boulder, Colorado, USA, 80309; Maria Stull, maria.stull@colorado.edu, University of Colorado Boulder, 1111 Engineering Dr,
 Boulder, Colorado, USA, 80309; Alessandro Roncone, alessandro.roncone@colorado.edu, University of Colorado Boulder,
 111 Engineering Dr, Boulder, Colorado, USA, 80309; Bradley Hayes, bradley.hayes@colorado.edu, University of Colorado
 Boulder, 1111 Engineering Dr, Boulder, Colorado, USA, 80309; Bradley Hayes, bradley.hayes@colorado.edu, University of Colorado

- Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
- prior specific permission and/or a fee. Request permissions from permissions@acm.org.
- © 2023 Association for Computing Machinery.
- 47 2573-9522/2023/0-ART0 \$15.00
- 48 https://doi.org/XXXXXXXXXXXXXX
- 49

30

31 32

33

34

35

36

1 2

3 4

5

6

7

Lohrmann et al.

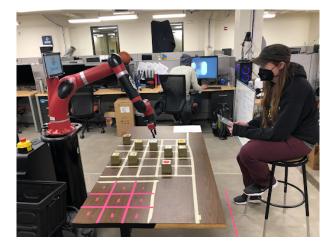


Fig. 1. A participant plays a collaborative block-selection game with a robot. By using PACT to augment its planner, the robot's actions are more predictable to the participant over multiple episodes and multi-task time horizons, and the robot is viewed as a better teammate.

unpredictable even in very simple environments [4]. This limits team performance, as humans prefer to work with agents they find predictable and trust unpredictable agents less [9].

As humans struggle to predict agent behavior, agents are simultaneously attempting to predict and adapt to humans. Prior work has been done to improve an agent's ability to predict human actions [11, 14, 27, 37] as well as adapt to human behaviors [7, 17, 40]. However, for collaboration to succeed, both human and agent need to be mutually predictable, and there are significant technical gaps in improving humans' ability to predict agents' actions.

In contrast to human-robot teams, human-human teams are extremely skilled at collaborative tasks where synchronization, coordination, and prediction of each other's behavior is necessary such as assembling a bookshelf or making a football pass. Part of this gap in performance can be explained by the distinct sets of tools that humans and robots each use to accomplish tasks. Humans do not often rely on optimization as a cognitive tool, and instead use heuristics and pattern recognition [12]. Notably, humans have difficulty in predicting what the robot will do next as the robot is not using cognitive tools the human is familiar with.

The cognitive processes humans rely on, while simpler than optimization methods, are more 84 adaptable than and often outperform such techniques, especially in complex environments where 85 optimization is computationally intractable [3, 12, 15, 31]. One of the cognitive tools that humans 86 employ is the ability to identify and process patterns, such as recognizing rhythm in a song or 87 the color order of changing stoplights. Pattern recognition has developed via our evolution as a 88 species and is facilitated by specific structures in our brains [30]. Even preschoolers are capable 89 of duplicating, extending, and abstracting patterns to new environments [35]. These are deeply 90 ingrained cognitive processes that humans are adept at using. 91

Within the context of teaming, humans extensively rely on conventions in order to effectively coordinate behavior. Conventions are a form of shared knowledge [39] that teammates can use in collaborative tasks to synchronize their actions. Patterns—a predictable sequence [35] of actions can make conventions easier to learn and follow. For a pattern-based convention to be meaningful to a human, the pattern must be human-perceptible, i.e., based on features that a human can observe. Using pattern-based conventions leverages innate human pattern-processing abilities, making the

65

66

67 68 69

70

71

72

73

74

75

conventions intuitive for people to identify [30] and predict. In order to facilitate human-robot collaboration, in this work we propose a filtering algorithm which enables an embodied agent to set conventions for the team by using a human-perceptible pattern to restrict its actions in a given situation to a more predictable set. We refer to this algorithm as Pattern-Aware Convention-setting for Teaming (PACT).

PACT can select patterns of varying complexity depending on the context, and is robust to 104 changes in the environment. A pattern selected by PACT can continue to be used without alteration 105 even if the task space changes over time. Our results show that by using PACT, not only does 106 the robot become more predictable to its human teammates, but team performance as 107 well as perceptions of the robot improve. These findings are supportive of the hypothesis 108 that, by leaning into familiar cognitive processes, humans can more readily identify the robot's 109 intentions, understand how the robot is making decisions, and abstract the robot's behavior into 110 new environments accurately. Not only is PACT effective, it demonstrates the benefit in adapting 111 human cognitive strengths for robots to use during collaboration. 112

114 2 BACKGROUND AND RELATED WORK

When humans collaborate, we build mental models of our teammates [44]. Mental models are 115 knowledge structures that help people to describe, explain, and predict events in our environment 116 117 [41]. Human teams are so astute, they can even create shared mental models for the team, creating shared knowledge and expectations that lead to greater success [29]. Evidence shows that humans 118 also build mental models of robots [41]. In line with human factors research, work within human-119 robot interaction indicates that when humans and robots can build accurate mental models of each 120 other, human-robot collaboration is more likely to be successful [21, 29, 32, 45]. Humans also trust 121 agents more when we find them predictable [9]. With traditional controllers, however, there are 122 no guarantees of pattern or regularity, so humans' mental models of robot teammates are often 123 incorrect or incomplete [5, 24]. 124

Humans reason in a fundamentally different, and often contradictory way to our robot teammates. 125 Artificially intelligent agents, embodied or otherwise, are built to optimize, but humans do not 126 optimize when we plan or make decisions [12]. We satisfice-meaning we find a "good enough" 127 solution to the problem [3, 12, 28]. People employ a variety of cognitive tools to do this, from using 128 heuristics to pattern recognition [1, 31, 43]. Satisficing is not a weakness of human cognition; to 129 the contrary, heuristic usage approaches rationality over the long term, and our brains developed 130 it to navigate our environment, where optimization is computationally intractable [2, 3, 15, 43]. 131 In human-robot teams, robot teammates are working on identifying and achieving the optimal 132 solution for a specific set of parameters, whereas human teammates are agreeing upon a "good 133 enough" solution, and these solutions are rarely the same. 134

Much of the recent work in human-robot collaboration focuses exclusively on improving the 135 performance of the robotic agent. Works that attempt to predict human actions or their path 136 directly have seen success within the environments they tested in [11, 14, 37]. There has also 137 been a significant effort to adapt successful methods in competitive environments to collaborative 138 environments [7, 20, 22, 42], though this is very difficult. Approaches that are highly effective in 139 competitive environments are challenging to adapt to collaborative environments [19]. What makes 140 many self-play approaches successful-a policy that is convoluted and difficult for opponents to 141 counter-is a drawback in collaborative settings. What results is a large drop in performance when 142 trained agents are tested with humans rather than other agents [22, 40]. These approaches also do 143 not capture the full scope of human collaboration within their environments [19]. 144

There is strong evidence in the literature that using human cognitive tools within human-robot and human-agent collaboration can be highly effective [23]. Work has shown that human partners

147

can learn conventions developed by artificially intelligent agents [39]. Significant work has also

been done to integrate social conventions into collaborative agents [25, 40]. When robots explicitly

adhere to human navigation conventions, humans find them more predictable and likeable, and the
robot's ability to navigate is not compromised [34, 36]. Further, having people rely on conventions
that they create themselves [8] or are already familiar with, such as "pinch" and "pull" motions
that people use on their smartphones [13], leads to improvement in their ability to collaborate with
a robot.

Failing to account for human cognitive tendencies may obscure results, and limit future work [5]. One such cognitive tendency is pattern recognition. The human brain floods with dopamine upon recognizing a pattern, thus, humans are strongly incentivized to find them [26]. Some scientists even consider pattern recognition and reasoning to be a cornerstone of higher intelligence [30]. As the human brain is wired for pattern recognition, actions that are pattern-based are more likely to be recognizable to human participants. By using PACT, we can select patterns that are as recognizable as possible.

163 3 A FRAMEWORK FOR PATTERNS-BASED CONVENTIONS

In this section we detail PACT, an entropy-based algorithm to select the most appropriate pattern to use in a given environment. The central cognitive science concept that underpins this approach is the human tendency toward pattern recognition and usage. By playing into known strengths of human cognition, the robot's behavior becomes more recognizable, predictable, and understandable to human teammates.

170 3.1 Definitions

PACT takes the tuple $\{T, F, r\}$ as input to determine the ideal pattern for a particular task space, where:

- $T = \{t_1, t_2, ..., t_n\}$ is the finite set of subtasks an agent must complete. *T* is unordered, but subtasks within *T* may have ordering constraints imposed by prerequisites.
- F = {f₁, f₂, ..., f_m} is a set of functions that map from a subtask to a feature of that subtask.
 (e.g., f₁(t) → "circle", f₂(t) → "red")
 - $f_i = [v_1, v_2, ..., v_k]$ is a feature vector representing a characteristic (e.g., for a feature "color" there may be categorical values { "red", "green", "blue"} encoded as a one-hot vector. A color feature could also be represented as a continuous three-dimensional vector of RGB values).
 - A **Rule** is a function that sorts subtasks in *T* using a comparator function over output from one or more features in *F*.
 - *r* is the maximum number of Rules that PACT is allowed to combine to form a *Pattern*, a hyperparameter selected by the user prior to Pattern formation.
 - A **Pattern** is an ordered sequence of between 1 and *r* Rules that augments available subtasks in *T* for a planner to select from in a given state. Rules are applied sequentially to filter out or augment the cost of elements in *T* to inform plan generation.

3.2 Rule Formation and Application

A Rule is a data structure that contains a sorting function and a set of features to apply it to. Given a set of subtasks, a Rule filters it down to a subset of subtasks that the agent can perform (while still being consistent with the Rule). For example Figure 2 shows an environment in which an autonomous drone must check critical infrastructure after a natural disaster. Communications are down, so the drone is unable to communicate reliably with a human ground crew, making

0:4

162

169

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Fig. 2. In this illustration of the PACT algorithm, we use a scenario in which a natural disaster has occurred in a coastal town. Critical infrastructure must be checked for damage, and an autonomous drone as well as a human team on the ground are tasked with damage assessment. In this time-sensitive task, communication between the drone and humans is limited. Each location indicated on the map has features used by PACT: whether the location contains humans that sheltered in place (red), the type of infrastructure (blue), and the likelihood the location is flooded (green). This scenario does not consider the distance traveled by the drone to be a constraint, but such constraints can easily be added to guide PACT's pattern-selection.

221 the predictability of the robot critical. Here, the set of subtasks T is the set of locations the drone 222 must check and document. Each location has three features: the estimated flooding risk (which 223 we discretize into low, medium, and high risk), the type of critical infrastructure (police station, 224 power substation, water treatment plant, and hospital), and whether or not human staff sheltered 225 in place there. A Rule based on the presence of humans could be ["no humans", "humans"], such 226 that the robot would visit all places without humans sheltering, followed by those locations with 227 humans. Another Rule based on the flood risk could be ["high", "medium", "low"]. Applying the 228 flood risk Rule ["high", "medium", "low"] to the locations in T would result in filtering the locations 229 down to the subset of locations with "high" flood risk. Each location in this subset would be visited 230 by the drone. Then, with no more "high" flood risk locations, the drone would visit all "medium" 231 flood risk locations, and so on. For this Feature, because each location has one of three possible 232 values, there are 3! possible orderings, meaning this Feature (flood risk) has 3! possible Rules that 233 could leverage it. Thus, given a set of n categorical Features, where each Feature i has k_i possible 234 values, there are at most $\sum_{i=1}^{n} k_i!$ single-Feature Rules that can be generated. For Rules over features 235 with non-categorical values, the space of orderings is technically infinite and depends entirely on 236 how complex the comparator function encoded in the Rule is, but by imposing a restriction to 237 sort values in either an ascending or descending order we may assume two Rules per continuous 238 feature. In the drone example given by Figures 2 and 3 there are 32 possible Rules that can be used. 239 Without loss of generality, in this work, each Rule is generated from a single feature. 240

Pattern Formation and Application 3.3

The hyperparameter *r* is set by the user prior to the generation of Patterns in order to determine the 243 maximum allowable complexity for the Patterns. r can be at most equal to the number of Features 244

245

241

242

214

215

216

217

218

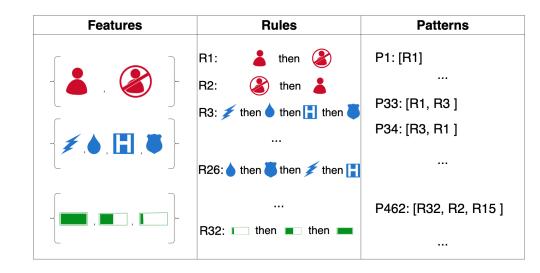


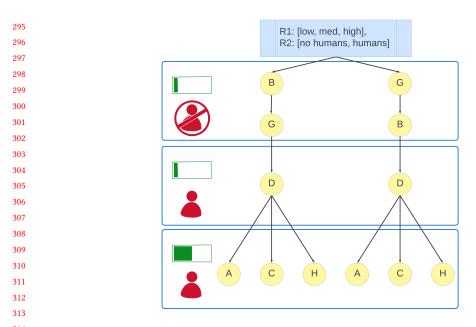
Fig. 3. In this example, we describe the formation of Rules and Patterns from the scenario in Figure 2. The left column shows the three features of each location we are using (human presence, infrastructure type, and flood risk), and the possible values for each feature. The center column shows the ways Rules can be constructed from features by imposing an ordering on the possible values of a feature. The right column shows how a Pattern is constructed by applying one or more Rules. Note that Patterns may not have conflicting Rules; we choose at most one rule per feature.

and must be at least one. With a larger r, Patterns can be more complex and are thus more likely to
be able to impose a fully deterministic ordering of tasks in a plan, but this increase in complexity
may also make the Pattern too difficult for a human partner to identify and follow.

A Pattern is a data structure that contains a sequence of between 1 and *r* Rules. Given a set of subtasks, the Pattern determines the subset of next possible subtasks. The initial set of subtasks is passed to the first Rule in the sequence, which returns the subset of allowable subtasks. This subset is passed to the second Rule in the sequence, continuing through the full sequence of Rules to obtain the final subset of possible subtasks for the given Pattern. Figure 4 illustrates the Pattern ["low", "medium", "high"], ["no humans", "humans"]. First, the set of locations the drone must visit is filtered down according to the first Rule (flood risk), leaving just the locations with "low" flood risk. This subset of locations is then passed on to the second Rule (human presence) to be filtered down to locations with "no humans". The drone will have to visit all locations in this subset (B and G) in any order before moving on to locations with different values for these features. After these locations, pictured in the first box of Figure 4, are checked, the remaining locations are passed to the first Rule and then the second to obtain the subset of locations that are "low" risk with "humans" (location D). After this location, the Pattern filters down to an empty set, as there are no locations with "medium" flood risk and "no humans". The Pattern will then identify locations with "medium" flood risk and "humans", which will be visited before locations with "high" risk and "no humans" (F) and then locations with "high" risk and "humans" (E).

289 3.4 Pattern Trees

Calculating a score to evaluate the effectiveness of a given Pattern requires evaluating the possible orderings of subtasks that it imposes throughout the plan it generates (or a sampled subset if otherwise infeasible). To efficiently compute and organize this for each Pattern, we construct a Pattern Tree. An illustration of a portion of a Pattern Tree generated from the drone example can



314 Fig. 4. For each Pattern, a Pattern Tree is constructed to easily identify all allowable orderings of subtasks. 315 In this Pattern, the first subtasks are those locations that are low flood risk and have no humans sheltering 316 in place (B,G). The second allowable subtasks are the remaining low risk, no human locations, which are 317 appended to the tree. All allowable orderings of length 2 can thus be obtained by traversing the tree to depth 2. For the third subtask, there are no remaining low risk locations with no humans, so the low risk locations 318 with humans are selected (D). There are no medium flood risk locations that do not have humans, so the 319 fourth possible subtasks are those that are of medium risk with humans. The tree is constructed in this 320 manner until it reaches a depth equal to the number of subtasks. 321

323 be seen in Figure 4. The first level of the tree is determined by the possible first subtasks given the 324 Pattern and T. For each subsequent level, the children of a node are determined by assuming the 325 path from root to parent node specifies the sequence being followed, and applying the Pattern to 326 the remaining subtasks. The final tree will have |T| levels, as the entire sequence will be generated. 327 Thus, traversing to the *i*th level of the tree will reveal all possible subsequences of length *i* for a 328 given Pattern. This simplifies Pattern evaluation calculations as matching subsequences of length 329 i-1 can be obtained for all Patterns quickly, and all possible *i*th subtasks can also be obtained by 330 indexing the children of all nodes in the (i - 1)th level of the tree. For tasks with prohibitively large 331 amounts of subtasks, Monte Carlo methods can be applied to approximate the Pattern Tree.

333 3.5 Pattern Scoring Metric

To determine the most appropriate Pattern for a given *T*, we propose a scoring metric that can be applied to a set of possible Patterns (which we refer to as the *Pattern Bank*). Patterns with lower scores are more preferable. We define this score (λ) for a given Pattern (*p*) as:

$$\lambda_p = \sum_{i=1}^{|T|} \mathcal{H}(T_{i,p}) + \left(\frac{|P_{i,\text{shared}}| - 1}{|P|}\right) * \mathcal{H}(T_{i,\text{shared}})$$
(1)

Where:

322

332

341

342 343 • *p* is the Pattern for which the score is being calculated.

- *T* is the set of subtasks the agent must perform.
 - $\mathcal{H}(x)$ is an entropy calculation for the collection *x*.

• $T_{i,p}$ is the collection of all possible subtasks at the *i*th step of planning given the Pattern *p*.

This can be extended over sets of Patterns as follows:

- *P* is the set of possible Patterns given {*F*, *r*}.
- $P_{i,\text{shared}}$ is the set of Patterns that share at least one possible sequence of length i 1 with the given Pattern p.
 - $T_{i,\text{shared}}$ is the collection of all possible subtasks at the *i*th step for all Patterns in $P_{i,\text{shared}}$.
 - All sequences of length i 1 are allowable.

This scoring metric allows for selection of a pattern that is both as deterministic as possible (first term) as well as unique (second term). Favorable patterns are those that become unique in their possible sequences as soon as possible (easier to identify/ legible [10]), while also being as deterministic as possible (easier to follow).

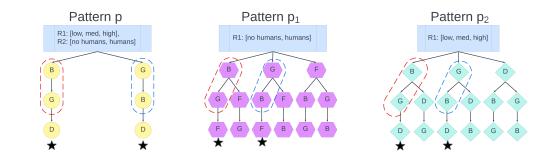


Fig. 5. This figure illustrates how the second term of the score in Eq. 1 is calculated for a given Pattern (the same Pattern shown in Figure 4) when i = 3. First, the possible orderings of length i - 1 are identified for the given Pattern, seen in the left tree. There are two possible subtask orderings of length i - 1, highlighted in red and blue. However, these orderings are not unique to this Pattern. There may be other Patterns in the Pattern Bank that share these orderings of length i - 1. Two such Patterns are shown here, with the matching orderings circled. If a human partner observes the robot going to B then G, they cannot distinguish between the Pattern the robot is following and these other Patterns. The (starred) children of these shared orderings are extracted from all Patterns in the Pattern Bank, and the entropy over this group is calculated. For this group of three trees, the group would be (D, D, F, F, D, D).

3.6 PACT

While the algorithm can be viewed in its entirety in pseudocode within Algorithm 1 in the appendix, we provide an intuitive walkthrough here for ease of understanding. Prior to applying PACT, we create a Pattern Tree for each Pattern in the Pattern Bank. We then initialize data structures that keep track of the best patterns and their scores. For each Pattern (p) in the Pattern Bank we calculate a pattern score, weighing how deterministic the pattern is and how much overlap in resulting plans there is with those generated by other Patterns in the Pattern Bank (i.e. how unique the pattern is compared to others). A pattern score is a summation of subscores calculated for the selection of each subtask in the sequence imposed by the Pattern. Scores start at zero and increase at each step. The subscores have terms related to entropy (i.e., how deterministic the plan imposed by the Pattern is) and uniqueness (to bias against Patterns that generate plans that can be explained by other Patterns).

0:8

The first term of Equation 1 is the entropy over the distribution of *i*th possible subtasks when a sequence of subtasks is being constructed using the given Pattern *p*. When using *p* to order the subtasks, the allowable sequences can be determined by traversing the tree. Thus, the subtasks that could be *i*th in a sequence that conforms to *p* are all those nodes at a depth of *i* in the Pattern Tree. In Figure 4, when i = 3, the nodes used for this calculation are in the middle box (depth of 3). When i = 4, the nodes used for this calculation are those in the bottom box. The first term for *i* is the calculated entropy for the set.

Figure 5 illustrates the calculation for the second term when i = 3. This calculates how unique pis, i.e. how much overlap there is between p and other Patterns in the Pattern Bank. The term is composed of an entropy value and a discount.

- When determining how unique an ordering induced by p is, the possible orderings of subtasks 403 must be compared with those of other possible Patterns. In Figure 5, p is the Pattern on the far left, 404 with circular nodes. When i = 3, there are only two possible subtask orderings of length 2 that 405 follow the Pattern, circled in red and blue dashed lines. If the robot is using p to order its subtasks, 406 a human partner will observe one of the circled orderings. However, these orderings may also 407 comply with other Patterns within the Pattern Bank. The trees with hexagonal and diamond nodes 408 in Figure 5 are other Patterns in the Pattern Bank which have some orderings of length i - 1 (2) in 409 common with the target Pattern p-also circled with dashed lines. If the robot goes to location B 410 then on to G, this behavior can be explained by p, but also by these other Patterns, which may lead 411 to the human partner to believe the robot is following a Pattern other than p leading to confusion 412 or difficulty predicting the robot in the future, as their mental model of the robot is incorrect. The 413 second term identifies the children of these shared sequences, marked in the figure with stars, 414 and calculates the entropy over them. Thus, Patterns that produce sequences of subtasks that are 415 unique have lower scores, and Patterns that produce orderings of subtasks that are shared across 416 many Patterns have higher (worse) scores. 417
- This entropy calculation is then discounted by the proportion of the Pattern Bank that has an ordering of length i - 1 in common with p. This is done to penalize Patterns that could be mistaken for a greater number of other Patterns. If p shares many orderings of length i - 1 with one other Pattern, this will lead to less confusion on the part of a human partner than if p shares a few orderings of length i - 1 with many Patterns in the Pattern Bank.
- When all of the subscores have been calculated and summed, we compare the total score for the Pattern to the minimum score, and store all minimum-scoring Patterns. When we have scored all Patterns, we return every minimum-scoring Pattern for subsequent selection and use by the planner.

Pattern scoring and selection is performed offline, done before the robot engages with an environment. While the Pattern can be updated or changed, a Pattern deemed to be the most suitable for a target set of environments can and should continue to be used in other environments the robot acts in to maximize predictability, as long as the features used in the Pattern remain present in these other deployment environments. Changes made to the Pattern during interaction with humans may make the robot less predictable, and this work promotes the use of one Pattern kept consistent even when the robot finds itself in previously unseen deployment environments.

4 EXPERIMENTAL EVALUATION

PACT can be applied to any planning problem for which the overarching task can be decomposed
into a predefined set of subtasks or goals (e.g., search a set of ten locations for survivors).

PACT can be applied to situations where the robot is working with one or more humans, such as remote sample recovery, wherein PACT would make it easier to predict where the robot would be retrieving samples from, allowing humans to parallelize efforts by focusing on areas that the robot

441

434

is not or to assist robots by traveling to their next destination without explicit communication
 requirements. PACT may also be used in scenarios where human and robot are simply sharing a
 workspace, where increased predictability of which object the robot will grab next allows humans
 to more easily navigate around or more safely work with the robot.

However, in these scenarios as well as in other more complex environments, there is a significant 446 amount of extraneous side-channel information that people may use to predict the robot's behavior. 447 People may wait for several moments to determine where the robot is headed next, take time to 448 simply observe the robot, or even be provided with information from the robot itself. In order to 449 effectively test PACT, and to show that the planner's order of subtasks alone is driving increased 450 predictability, all of this information must be removed. Any effective testbed for such a system 451 must be framed as a coordination problem, so that the human does not have the opportunity to 452 observe the robot without taking any action themselves. The coordination task is structured such 453 that only by accurately predicting the robot's actions can the team succeed, and there is no other 454 information the human can rely on other than previous robot actions and their own mental model 455 of the robot. 456

PACT can be applied to a broad range of planning prob-457 lems that can be constructed from this maximally con-458 strained coordination problem, by relaxing the testbed's 459 requirements of forced simultaneous action selection or 460 inability to wait and observe the robot. While this makes 461 the task of coordinating with and predicting the behavior 462 of the robot significantly more difficult, it allows for a 463 stronger assessment of the effectiveness of PACT than 464 would occur in a more realistic collaborative scenario with 465 additional side-channel information available. 466

Thus, we evaluate the efficacy of PACT through a collaborative game involving a human and robot that rewards teams whose members' task selections are predictable.

4.1 Game Environment

The collaborative game is played on a five by five grid on 472 a table in a shared workspace (Figure 6). At the beginning 473 of a round, nine blocks are placed in unique locations 474 on the grid. Every block is assigned a unique numerical 475 value between one and nine, which is neither known 476 nor observable by the human participant and is used to 477 calculate the score for a successful move, representing the 478 reward function that a traditional robot planner would 479

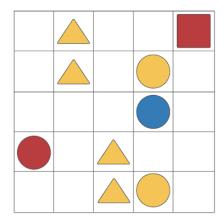


Fig. 6. The layout for the collaborative game. Nine blocks, each with a color, shape, and reward value are placed on the grid. Only the robot has knowledge of the rewards. Both players secretly select a block by color and shape, and if they coordinate, the robot removes a block from the grid.

attempt to maximize. At the start of each turn, the participant and Sawyer, a 7-degree-of-freedom 480 robotic arm, both select a block without seeing the choice of their teammate. Participants make 481 their selection on a tablet, and are allowed to select any block type (e.g., "blue triangle"). When both 482 teammates have made their selection, Sawyer reveals its selection on its screen, and the participant 483 receives an update on the tablet showing both players' selections as well as score information. If the 484 team members each select blocks with fully matching visual features (e.g., both with yellow circles 485 on them), Sawyer removes one block that matches those features from the grid. The team receives a 486 positive reward based upon the numerical values of the blocks remaining and the number of blocks 487 the team had to choose from; as the number of blocks on the board decreases (and it is more likely 488 that teammates could coordinate by chance), the reward decreases. The game is scored as follows: 489

467

468

469 470

where:

491

496

497

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519 520

521

522 523

527

528

• *t* = current turn number

• B_{rem} = set of blocks remaining on the board

•
$$B_{sum} = \sum_{i=0}^{|B_{rem}|-1} B_{rem}[i].numeric_value$$

If the team does not agree on the same type of block, a penalty is assessed to the team. The size of the penalty increases as the game progresses, so an inability to coordinate early in the game is not penalized as harshly as failing to coordinate on the last few blocks. If the team is able to coordinate on a subset of features, i.e., both players select the same color or shape (but not both), the penalty assessed is reduced; teams that are able to coordinate along some axes are not penalized as much as teams that cannot coordinate on any features. Teams must coordinate to remove all nine of the blocks from the grid to complete a round.

 $S(t) = \begin{cases} -10t/(n+1) & n \text{ matching features} \\ B_{sum} + 5(|B_{rem}| + 1) & \text{all features match} \end{cases}$

It is important to note that the sequence of blocks that the robot will select is determined prior to the first turn: **this experimental setup is designed to test human understanding and prediction of robot behavior, not robot adaptation to human behavior**. Regardless of what the participant selects, the robot will always select the next block in the predetermined sequence.

This means that the robot will continue to select the same block until the participant matches the robot's selection. Upon the completion of each round, a new set of nine blocks is placed in the workspace in a new configuration. The numerical value of each block is also new, with no relationship between the value and any of the human-visible features. In other words, the reward function changes with each episode and is never shown or explained to the human teammate. This design decision illustrates the trade-offs between capability (reward maximization) and predictability (pattern adherence) when coordinating as a human-robot team.

4.2 Applying PACT to the Coordination Domain

The variables required to utilize PACT are defined as follows:

- T = A set of subtasks, one for each of the nine blocks in the workspace.
- F = A set of functions mapping each block subtask (by unique id) to values of features of the blocks— "color": {"blue", "red", "yellow"}, "shape": {"circle", "square", "triangle"}, "position":
 {"row":{1, 2, ..., 5}, "column": {1, 2, ..., 5}}
 - r = 2, such that only up to two Rules may be ordered to create a Pattern

The *position* Rules ordered the values in either ascending or descending order, operating over either only a single field (either "row" or "column") or both (e.g., rows descending and columns ascending). In our environment—because the human and robot select blocks by color and shape on the interface (e.g., a "yellow triangle block", without specifying location)—when calculating entropy over subsequent tasks to select, all tasks involving blocks of the same shape and color are treated equally regardless of position.

4.3 Experimental Design

Study participants (n = 28) were assigned randomly into one of three conditions in a betweensubjects design:

538 539

535

536

- Reward-Maximizing: The participant works with a robot that selects blocks in the order that
 will maximize the team score in the event of perfect coordination, analogous to traditional
 reward optimization approaches.
- PACT Pattern: Participants are on a team with a robot that selects blocks following a pattern based convention, generated and selected by PACT such that the pattern score is best for
 the set of tasks to be completed in the first round environment.
- Median Pattern: Participants work with a robot that selects blocks by following a pattern that achieved a median score when compared against all possible patterns in the first round environment.

Patterns selected for the PACT and Median groups are based on the first round environment and remain the same for all subsequent rounds of gameplay, despite environment changes. This allows us to evaluate team performance in both a 'target' environment that may be known and optimized against in advance (first round) and in new environments not explicitly optimized for (subsequent rounds).

4.4 Study Protocol

Consent was obtained from all participants, preceded by a brief check of participants' ability to 558 distinguish between the block colors. One participant self-identified as colorblind, though not 559 a form of colorblindness that would prevent them from distinguishing between the colors used. 560 Participants were then given a randomly generated six-digit identifier to link their survey responses, 561 and were randomly assigned to an experimental group. Following this, participants filled out a 562 pre-experiment survey about their experience with robots, attitudes about robots, and initial 563 sentiments toward Sawyer, the robot used in the experiment. Experimenters then explained the 564 collaborative game, answered questions, and participants began gameplay. After each round of the 565 game, participants answered questions about their cognitive fatigue, ability to predict the robot's 566 behavior, and confidence in their team. After three rounds of the game, a third type of survey was 567 administered. Participants were shown five novel game set ups, and were asked to identify which 568 color and shape block the robot would select first and last in each given game. Participants were also 569 given the option to mark that they were uncertain about either feature. Finally, a post-experiment 570 survey was conducted, again surveying participants about their sentiments about the robot, their 571 game comprehension, as well as questions about the team dynamics and performance of each team 572 member. Following the completion of the survey, participants participated in a brief unstructured 573 interview and debrief. The duration of the experiment was approximately sixty minutes. 574

4.5 Measurement

28 participants were recruited from the student community of our university for the IRB-approved 578 human subjects study. Pre-experiment survey questions were taken from NARS, RoSAS, and 579 previous HRI work [6, 33, 38]. Between rounds, participants answered selected questions from the 580 NASA Task Load Index [16] to measure their cognitive fatigue and frustration, as well as several 581 questions about their confidence in their choices. A "Round 4" survey consisting of five novel game 582 setups was created specifically for this experiment in order to measure participants' ability to 583 abstract the robot's behavior into a new environment. The post-experiment survey consisted of 584 questions from RoSAS, identical to those asked in the pre-experiment survey, survey questions 585 about the fluency of the team [18], as well as custom questions adapted from the team fluency 586 questions. 587

588

575 576

577

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2023.

0:12

549

555 556

589 4.6 Hypotheses

594

595

596

597

598

599

600

601 602

603 604

605

606

607

We conducted an ethics board approved human-subjects study to investigate the following hypotheses regarding the effectiveness of PACT within a human-robot collaborative coordination task:

- *H*₁: Participants who work with the robot using PACT will have a more positive attitude about the dynamics of the team (i.e., coordination, mutual understanding, teamwork, etc) compared to all other groups.
 - *H*₂: Participants who engage with the robot using PACT will have a more positive perception of the robot than participants in the Reward-Maximizing and Median Pattern groups.
- *H*₃: Constraining the robot's behavior to follow any patterns-based convention will result in better team performance on the task, as well as an improvement in participants' ability to predict the robot's actions.

5 RESULTS AND DISCUSSION

Of the 28 individuals who participated, the data of one participant was excluded due to noncompliance with instructions. We did not observe any multimodalities within the data.

608 We found a significant effect from the PACT Pat-609 tern condition on participant perceptions of the 610 team's dynamics, validating H1. Post-hoc com-611 parisons using Tukey's HSD test (Figure 7), indi-612 cate that participants felt that that robot picked the 613 best block for the team during gameplay compared 614 to the control condition of Reward-Maximizing 615 (p = 0.0353) as well as the Median Pattern group 616 (p = 0.0493). Additionally, PACT Pattern partici-617 pants did not feel that swapping the robot out for 618 a human teammate would result in better perfor-619 mance when compared to the Reward-Maximizing 620 group (p < 0.004) as well as the Median Pattern 621 group (p < 0.009), indicating that **PACT Pattern** 622 participants viewed the robot as performing 623 at least as well as a human teammate would 624 have. 625

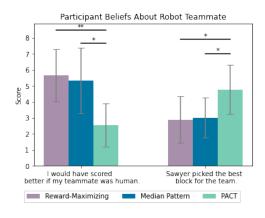


Fig. 7. There were significant improvements in PACT Pattern participant belief that the robot selected the right block for the team over the Reward-Maximizing (p = 0.0353) and Median Pattern (p = 0.0493) groups, as well as if the participants believed a human partner would have led to greater success. (Reward-Maximizing p < 0.004, Median p < 0.009).

We also found a significant effect caused by the 626 PACT Pattern condition on perceptions of team fluency, as indicated by Figure 8; the PACT Pattern 627 condition resulted in a significantly higher perception of team fluency as compared to the Reward-628 Maximizing baseline (p = 0.0178), while there was no significant difference for participants in the 629 Median Pattern group compared to the Reward-Maximizing condition. Additionally, there was a 630 significant effect caused by the PACT Pattern condition on participants' perception of whether 631 or not the participant and robot were good teammates to each other. PACT Pattern participants 632 reported significantly more positive perceptions of themselves as a teammate to the robot when 633 compared to the Reward-Maximizing (p = 0.0129) and the Median Pattern group (p = 0.0336), as 634 well as whether the robot was a good teammate to the participant when compared to the Reward-635 Maximizing group (p = 0.0121). The PACT Pattern group was also the only pattern-based 636

Normalized Scores			
Round	Group	Mean Score	p-value
1	Reward-Maximizing	6.81	_
1	Median Pattern	52.00	0.0007
1	PACT	71.27	0.0
2	Reward-Maximizing	27.12	_
2	Median Pattern	60.33	0.0246
2	PACT	78.68	0.0006
3	Reward-Maximizing	21.74	_
3	Median Pattern	79.49	0.0012
3	РАСТ	88.06	0.0003

Table 1. Normalized game scores and p-values obtained via Tukey's HSD for each pattern-based group compared to the baseline Reward-Maximizing group. There were no significant differences between the PACT and Median groups for normalized scores across all rounds.

group that saw a significant difference over the Reward-Maximizing condition when asked if they would work with the robot again (p = 0.0287).

Post-hoc comparisons using Tukey's HSD test indicate a **partial confirmation of** H₂. While there was a significant effect from the PACT Pattern treatment on the likeability of the robot when compared to the Median Pattern group (p < 0.05), there was no significant difference compared to the Reward-Maximizing group (p = 0.1), Figure 8.

We also found a significant effect from both pat-664 tern conditions on team performance, validating 665 H₃. Post-hoc comparisons using Tukey's HSD in-666 dicate significantly higher normalized scores for 667 both the PACT Pattern and Median Pattern groups 668 across all three rounds, as indicated by Table 1. As 669 seen in Figure 9, the PACT Pattern group made 670 significantly fewer errors when compared to the 671 Reward-Maximizing group across all rounds of 672 gameplay. The Median Pattern group made signif-673 icantly fewer errors than the Reward-Maximizing 674 group in rounds one and three, but there was no 675 significant difference over the Reward-Maximizing 676

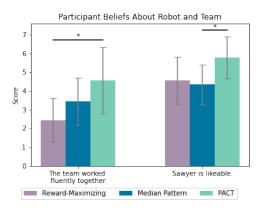


Fig. 8. Using PACT led to significant improvement in team fluency over baseline (p = 0.0178), as well as perceptions of robot likeability over the Median group (p < 0.05).

in round two. Part of this may be due to the differences in the patterns seen by each group. Participants in the Median Pattern group saw much more ambiguous patterns than those in the PACT
group, meaning that participants in the Median Pattern group could play at least half of the first
round and obtain a perfect score by following a pattern other than the robot's pattern. The Median
Pattern group was the only group to show significance over the Reward-Maximizing after only one
round of gameplay in their belief of understanding how the robot was choosing blocks (p=0.0241),
but this effect was no longer significant after another round of gameplay.

Further validating H₃, participants rated the predictability and understandability of the robot
 in a variety of questions in the Post-Experiment Survey. Using Tukey's HSD, comparisons between

650

651

656

the Reward-Maximizing group and both patterns-based groups were significant (Figure 10). When 687 compared to the Reward-Maximizing baseline, participants in both the PACT Pattern group (p < p688 0.0001) and the Median Pattern group (p = 0.0001) felt the robot was predictable. When asked 689 about the understandability of the robot's actions, the PACT Pattern group (p = 0.0003) and the 690 Median Pattern group (p = 0.0097) both felt the robot was understandable compared to the Reward-691 Maximizing baseline. However, there is an important caveat to this finding. Participants were asked 692 about the broader application of the system, and whether they believed most people would be 693 694 able to understand the robot (Figure 10). Only participants in the PACT group felt that most people would be able to understand the robot, compared to both the Reward-Maximizing 695 group (p = 0.0009) and Median Pattern group (p = 0.0441), confirming the premise of this work 696 and validating the proposed contribution. While participants in the Median Pattern group believed 697 at the end of gameplay that they understood the robot's decisions, they did not believe that the 698 699 system they saw would be broadly understandable.

701 5.1 Discussion

700

711 712

713 714

715

716

717

718

719

720

721

722

723 724

725

726

727

728 729

702 Our results support the claim that PACT allows a robot to schedule its tasks more predictably, 703 allowing humans to work more effectively with it. This effectiveness stems from the deep-seated 704 human tendency towards pattern recognition and usage. Evidence of this unconscious tendency emerged in participant exit interviews. Despite the lack of a human-visible pattern in the Reward-705 706 Maximizing group, approximately half of the participants were convinced that the robot was engaging in some pattern or rule-based behavior. Many voiced that given more gameplay, they 707 likely would be able to find the pattern in the robot's behavior. Many of these participants indicated 708 709 that they were searching for a pattern that "must" be there, despite there not being any observable 710 pattern.

Additionally, the majority of participants who saw a pattern were unable to articulate the pattern or to fully explain the robot's behavior. Even in the group that saw the PACT pattern, less than half

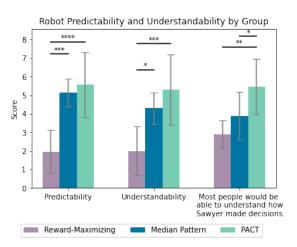


Fig. 10. Participants in the PACT Pattern (p < 0.0001) and the Median Pattern (p = 0.0001) both found the robot significantly more predictable than the baseline. Both groups also found the robot's behavior more understandable than the baseline group. (PACT p = 0.0003, Median p = 0.0097) Only the participants who used PACT felt the robot would be broadly understandable to people when compared to the baseline (p = 0.0009) as well as the Median Pattern group (p = 0.0441).

of participants could fully explain the pattern they saw, despite many of them playing perfectly coordinated rounds with the robot.

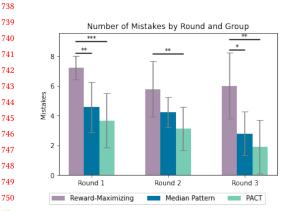


Fig. 9. Participants in the group that engaged with a robot using PACT made significantly fewer mistakes than the baseline group across all three rounds (p = 0.0003, 0.0042, 0.0005), whereas the Median group only made significantly fewer mistakes in two rounds (p = 0.0047, 0.1138, 0.0053).

Anecdotally, this may indicate that centering human cognition and reasoning leads to more unconscious decision-making by humans. Perhaps participants who see a PACT pattern are able to unconsciously predict the robot's next move, without having to use logic or more complex reasoning. Further work to explore this phenomenon and its impacts on human-robot teaming is necessary.

6 CONCLUSIONS

Participants who collaborate with a robot whose behavior follows pattern-based behavioral conventions selected via PACT report significantly better subjective (perceptions of the robot) and objective (scores) measures when compared to participants who collaborate with a robot focused solely on maximizing team reward. Participants who engage with a robot that uses pattern-based behavioral conventions that are not optimized for the environment by PACT still realize significant performance improvement in coordination, but at the expense of subjective perceptions of the collaboration and

robot. These study results reinforce the importance of leveraging convention in fluent human-robot collaboration, and confirm that PACT is an effective mechanism to do so.

This work demonstrates that intentionally leaning into human cognitive tendencies and deemphasizing reward-maximizing behavior leads to substantially better outcomes along both objective and subjective metrics. Our proposed method does not preclude the usage of other planning tools, and can be used in tandem with other methods to make robots more predictable while remaining capable. Additionally, the tradeoff between optimal planning and predictability can be negotiated for any environment; PACT can create complex patterns similar to optimal planning, or simple ones to maximize predictability.

As robots are placed in environments where they will be trusted with a diversity of tasks, especially in cases where they will be in close contact with humans, it is critical to characterize and address the disparities between the way robots and humans reason. Robots that are exclusively optimizing for a given reward are reasoning about their environment and collaborations in a fundamentally different way from the humans that they work around and attempt to collaborate with. This leads to a lack of predictability, limiting collaboration. **PACT demonstrates that we can bridge this gap and make robots more predictable without limiting team performance.**

REFERENCES

- Charles F. Abel. 2003. Heuristics and problem solving. New Directions for Teaching and Learning 2003, 95 (2003), 53–58. https://doi.org/10.1002/tl.113
- [2] Stéphane Airiau, Sandip Sen, and Daniel Villatoro. 2014. Emergence of conventions through social learning: Heterogeneous learners in complex networks. *Autonomous Agents and Multi-Agent Systems* 28, 5 (2014), 779–804. https://doi.org/10.1007/s10458-013-9237-x
- [3] Fatima M. Albar and Antonie J. Jetter. 2009. Heuristics in decision making. *PICMET: Portland International Center for Management of Engineering and Technology, Proceedings* (2009), 578–584. https://doi.org/10.1109/PICMET.2009.5262123

736

737

769

770

771

772

773 774

775 776

777

778

779

784

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2023.

- [4] Franziska Babel, Johannes Kraus, and Martin Baumann. 2022. Findings From A Qualitative Field Study with An Autonomous Robot in Public : Exploration of User Reactions and Conflicts. *International Journal of Social Robotics* 14 (2022), 1625–1655. Issue 7. https://doi.org/10.1007/s12369-022-00894-x
- [5] Serena Booth, Sanjana Sharma, Sarah Chung, Julie Shah, and Elena L Glassman. 2022. Revisiting Human-Robot Teaching and Learning Through the Lens of Human Concept Learning. In *HRI '22: Proceedings of the 2022 ACM/IEEE International Conference on Human-Robot Interaction*. 147–156. http://slbooth.com/HRI_Concept_Learning/index.html
- [6] Colleen M Carpinella, Alisa B Wyman, Michael A Perez, and Steven J Stroessner. 2017. The robotic social attributes scale
 (RoSAS) development and validation. In *Proceedings of the 2017 ACM/IEEE International Conference on human-robot interaction*. 254–262.
- [7] Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and Anca Dragan. 2019.
 On the Utility of Learning about Humans for Human-AI Coordination. Curran Associates Inc., Red Hook, NY, USA.
- [8] Rui Chen, Alvin Shek, and Changliu Liu. 2021. Learn from Human Teams: a Probabilistic Solution to Real-Time
 Collaborative Robot Handling with Dynamic Gesture Commands. *CoRR* abs/2112.06020 (2021). arXiv:2112.06020
 https://arxiv.org/abs/2112.06020
- [9] Sylvain Daronnat, Leif Azzopardi, Martin Halvey, and Mateusz Dubiel. 2021. Inferring Trust From Users' Behaviours; Agents' Predictability Positively Affects Trust, Task Performance and Cognitive Load in Human-Agent Real-Time Collaboration. Frontiers in Robotics and AI 8, July (2021), 1–14. https://doi.org/10.3389/frobt.2021.642201
- [10] Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. 2013. Legibility and predictability of robot motion. In
 Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction (Tokyo, Japan) (*HRI '13*). IEEE
 Press, 301–308.
- [11] Ali Ghadirzadeh, Xi Chen, Wenjie Yin, Zhengrong Yi, Marten Bjorkman, and Danica Kragic. 2021. Human-Centered Collaborative Robots with Deep Reinforcement Learning. *IEEE Robotics and Automation Letters* 6, 2 (2021), 566–571. https://doi.org/10.1109/LRA.2020.3047730 arXiv:2007.01009
- [12] Gerd Gigerenzer. 2008. Why Heuristics Work. Perspectives on Psychological Science 3, 1 (2008), 20–29. https: //doi.org/10.1111/j.1745-6916.2008.00058.x PMID: 26158666.
- [13] Ji Han, Gopika Ajaykumar, Ze Li, and Chien Ming Huang. 2020. Structuring Human-Robot Interactions via Interaction Conventions. 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020 (2020), 341–348. https://doi.org/10.1109/RO-MAN47096.2020.9223468
- [14] Marc Hanheide, Annika Peters, and Nicola Bellotto. 2012. Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus. *Proceedings - IEEE International Workshop on Robot and Human Interactive Communication* September (2012), 689–694. https://doi.org/10.1109/ROMAN.2012.6343831
- [15] Sergiu Hart. 2005. Adaptive Heuristics. Econometrica 73, 5 (2005), 1401–1430. http://www.jstor.org/stable/3598879
- [16] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In *Human Mental Workload*, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychology, Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
- [17] Bradley Hayes and Brian Scassellati. 2015. Effective robot teammate behaviors for supporting sequential manipulation
 tasks. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 6374–6380.
- [18] Guy Hoffman. 2019. Evaluating Fluency in Human-Robot Collaboration. *IEEE Transactions on Human-Machine Systems* 49, 3 (2019), 209–218. https://doi.org/10.1109/THMS.2019.2904558
- [19] Hengyuan Hu, Adam Lerer, Brandon Cui, Luis Pineda, Noam Brown, and Jakob Foerster. 2021. Off-belief learning. In International Conference on Machine Learning. PMLR, 4369–4379.
- [20] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. 2020. "Other-Play" for Zero-Shot Coordination.
 In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 4399–4410. https://proceedings.mlr.press/v119/hu20a.html
- [21] Catholijn M. Jonker, M. Birna van Riemsdijk, and Bas Vermeulen. 2011. Shared Mental Models. In *Coordination, Organizations, Institutions, and Norms in Agent Systems VI*, Marina De Vos, Nicoletta Fornara, Jeremy V. Pitt, and George Vouros (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 132–151.
- [22] Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Turner, Santiago Miret, Yinyin Liu, and
 Kagan Turner. 2019. Collaborative evolutionary reinforcement learning. 36th International Conference on Machine
 Learning, ICML 2019 2019-June (2019), 5816–5827. arXiv:1905.00976
- [23] Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P. Losey, and Dorsa Sadigh. 2020. When humans aren't optimal: Robots that collaborate with risk-aware humans. *ACM/IEEE International Conference on Human-Robot Interaction* (2020), 43–52. https://doi.org/10.1145/3319502.3374832 arXiv:2001.04377
- [24] Minae Kwon, Malte F. Jung, and Ross A. Knepper. 2016. Human expectations of social robots. ACM/IEEE International Conference on Human-Robot Interaction 2016-April (2016), 463–464. https://doi.org/10.1109/HRI.2016.7451807
- [25] Adam Lerer and Alexander Peysakhovich. 2019. Learning existing social conventions via observationally augmented self-play. AIES 2019 Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019), 107–114.
- 833

https://doi.org/10.1145/3306618.3314268 arXiv:1806.10071

- [26] Fei Li, L. Phillip Wang, Xiaoming Shen, and Joe Z. Tsien. 2010. Balanced dopamine is critical for pattern completion
 during associative memory recall. *PLoS ONE* 5, 10 (2010). https://doi.org/10.1371/journal.pone.0015401
- [27] Olivier Mangin, Alessandro Roncone, and Brian Scassellati. 2022. How to be Helpful? Supportive Behaviors and Personalization for Human-Robot Collaboration. *Frontiers in Robotics and AI* 8 (2022). https://doi.org/10.3389/frobt.
 2021.725780
- [28] Barnaby Marsh. 2002. Heuristics as social tools. New Ideas in Psychology 20, 1 (2002), 49–57. https://doi.org/10.1016/
 S0732-118X(01)00012-5
- [29] John E. Mathieu, Gerald F. Goodwin, Tonia S. Heffner, Eduardo Salas, and Janis A. Cannon-Bowers. 2000. The influence of shared mental models on team process and performance. *Journal of Applied Psychology* 85, 2 (2000), 273–283. https://doi.org/10.1037/0021-9010.85.2.273
- [30] Mark P. Mattson. 2014. Superior pattern processing is the essence of the evolved human brain. *Frontiers in Neuroscience*844 8, 8 AUG (2014), 1–17. https://doi.org/10.3389/fnins.2014.00265
- [31] Shabnam Mousavi and Gerd Gigerenzer. 2014. Risk, uncertainty, and heuristics. *Journal of Business Research* 67, 8 (2014), 1671–1678. https://doi.org/10.1016/j.jbusres.2014.02.013
- [32] Stefanos Nikolaidis and Julie A. Shah. 2012. Human-Robot Teaming using Shared Mental Models. *IEEE/ACM International Conference on Human-Robot Interaction, Workshop on Human-Agent-Robot Teamwork (2012)* 17, 6 (2012), 1098–1106.
- [33] Tatsuya Nomura, Tomohiro Suzuki, Takayuki Kanda, and Kensuke Kato. 2006. Measurement of negative attitudes
 toward robots. *Interaction Studies* 7, 3 (2006), 437–454.
- [34] Amit Kumar Pandey and Rachid Alami. 2009. A framework for adapting social conventions in a mobile robot motion in human-centered environment. 2009 International Conference on Advanced Robotics, ICAR 2009 (2009).
- [35] Bethany Rittle-Johnson, Emily R. Fyfe, Laura E. McLean, and Katherine L. McEldoon. 2013. Emerging Understanding
 of Patterning in 4-Year-Olds. *Journal of Cognition and Development* 14, 3 (2013), 376–396. https://doi.org/10.1080/
 15248372.2012.689897
- [36] Alessandra Rossi, Fernando Garcia, Arturo Cruz Maya, Kerstin Dautenhahn, Kheng Lee Koay, Michael L. Walters, and Amit K. Pandey. 2019. Investigating the Effects of Social Interactive Behaviours of a Robot on People's Trust During a Navigation Task. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11649 LNAI, July (2019), 349–361. https://doi.org/10.1007/978-3-030-23807-0_29
- [37] Basak Sakcak and Luca Bascetta. 2022. Safe Motion Planning for a Mobile Robot Navigating in Environments Shared
 with Humans. (2022). arXiv:2206.07498 http://arXiv.org/abs/2206.07498
- [38] Kristin E. Schaefer. 2016. Measuring Trust in Human Robot Interactions: Development of the "Trust Perception Scale-HRI".
 Springer US, Boston, MA, 191–218. https://doi.org/10.1007/978-1-4899-7668-0_10
- [39] Andy Shih, Arjun Sawhney, Jovana Kondic, Stefano Ermon, and Dorsa Sadigh. 2021. On the Critical Role of Conventions in Adaptive Human-AI Collaboration. In *Proceedings of the 9th International Conference on Learning Representations* (*ICLR*).
- [40] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. 2021. Collaborating with Humans
 without Human Data. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
 P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 14502–14515. https://proceedings.neurips.
 cc/paper/2021/file/797134c3e42371bb4979a462e5042a-Paper.pdf
- [41] Aaquib Tabrez, Matthew B. Luebbers, and Bradley Hayes. 2020. A Survey of Mental Modeling Techniques in Human–Robot Teaming. *Current Robotics Reports* 1, 4 (2020), 259–267. https://doi.org/10.1007/s43154-020-00019-0
- [42] Mycal Tucker, Yilun Zhou, and Julie Shah. 2022. Latent Space Alignment Using Adversarially Guided Self-Play.
 International Journal of Human–Computer Interaction 0, 0 (2022), 1–19. https://doi.org/10.1080/10447318.2022.2083463
- [43] Amos Tversky and Daniel Kahneman. 1974. Judgment under Uncertainty: Heuristics and Biases. Science 185, 4157 (1974), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
- [44] J. R. Wilson and A. Rutherford. 1989. Mental models: Theory and application in human factors. *Human Factors* 31, 6 (1989), 617–634. https://doi.org/10.1177/001872088903100601
- [45] John Yen, Xiaocong Fan, Shuang Sun, Rui Wang, Cong Chen, Kaivan Kamali, and Richard a Volz. 2003. Implementing
 Shared Mental Models for Collaborative Teamwork. *The Workshop on Collaboration Agents: Autonomous Agents for Collaborative Environments in the EEE/WIC Intelligent Agent Technology Conference, Halifax, Canada* (2003).
- 877
- 878
- 879
- 879
- 880 881
- 882

ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2023.

A ALGORITHM

884 885

883

Algorithm 1 Best Pattern Selection 886 Input: Set of tasks T, Set of Patterns P 887 **Output:** The pattern(s) best suited for *T* 888 1: minScore $\leftarrow \infty$ 889 2: bestPatterns $\leftarrow \emptyset$ 890 3: for $p \in P$ do 891 score $\leftarrow 0$ 4: 892 for $i \in 1 \le i \le |T|$ do 5: 893 6: $S_p \leftarrow$ every allowable sequence of length i - 1 using p894 $T_{i,p} \leftarrow []$ 7: 895 for $s \in S_p$ do 8: 896 $t_s \leftarrow$ all allowable next tasks after completing s, under pattern p 9: 897 $T_{i,p}.extend(t_s)$ 10: 898 end for 11: 899 $firstTerm = H(T_{i,p}) // Calculate entropy$ 12: 900 $P_{i,\text{shared}} \leftarrow \{\} // \text{Patterns sharing candidate seqs with } p$ 13: 901 $T_{i,\text{shared}} \leftarrow []$ 14: 902 for $q \in P$ do 15: 903 $S_q \leftarrow$ every allowable sequence of length i - 1 using q 16: 904 17: $S_q = S_q \cap S_p //$ Only sequences that also follow p905 if $|S_a| > 0$ then 18: 906 $P_{i,\text{shared}} \leftarrow P_{i,\text{shared}} \cup \{q\}$ 19: 907 for $s \in S_q$ do 20: 908 $t_s \leftarrow$ all allowable next tasks after completing s, under pattern q 21: 909 $T_{i,\text{shared}}.extend(t_s)$ 22: 910 end for 23: 911 end if 24:912 end for 25: 913 $discount = \frac{|P_{i,\text{shared}}|-1}{|P|}$ 26: 914 $secondTerm = discount * H(T_{i,shared})$ 27: 915 $score \leftarrow score + firstTerm + secondTerm$ 28: 916 end for 29: 917 **if** score = minScore **then** 30: 918 $bestPatterns \leftarrow bestPatterns \cup \{p\}$ 31: 919 else if score < minScore then 32: 920 minScore = score33: 921 $bestPatterns \leftarrow \{p\}$ 34: 922 end if 35: 923 36: end for 924 37: return bestPatterns 925 926

SURVEY QUESTIONS 932 В

933 Listed p-values are of the form (conventions/median, conventions/optimal, median/optimal). 934

935 **B.1 Pre-Activity Survey**

936 B.1.1 *Experience with Robots.* Questions in this section were either multiple choice, or select all 937 that apply. Options for each question are listed below the question. 938

• Have you ever watched a movie or television show that includes robots? (0.86,0.28,0.55) 939 0 shows/movies 940 1-5 shows/movies 941 6-10 shows/movies 942 10+ shows/movies 943 • Have you ever interacted with a robot? (select all that apply) (0.22,0.22,0.22) 944 Museum or theme park animatronics 945 Toys such as Furby 946 Robot vacuum 947 Classroom robots or Battlebots 948 Sawyer (the robot in this experiment) 949 Everyday items such as cell phone, computer, ATM, or Xbox 950 Other 951 • Have you ever built a robot? (select all that apply) (0.11,0.22,0.11) 952 Classroom setting 953 Club setting 954 Other 955 • Have you ever controlled a robot? (select all that apply) (0.33,0.11,0.22) 956 Teleoperation or remote control 957 Speech, Gesture, Commands 958 Computer programmed 959 Other

Attitudes Towards Robots. The next set of questions detailed participants' attitudes towards B.1.2 robots in general. All questions were on a 7-point Likert scale, with 1 being Strongly Disagree and 7 being Strongly Agree. p-values in this section are based on the difference between pre- and post-activity surveys.

964 965 • I would feel uneasy if robots really had emotions. (0.27,0.14,0.92) 966 Something bad might happen if robots developed into living beings. (0.12,0.95,0.21) 967 • I would feel relaxed talking with robots. (0.86,0.76,0.98) 968 • I would feel uneasy if I was given a job where I had to use robots. (0.003,0.06,0.45) 969 • If robots had emotions I would be able to make friends with them. (0.88,0.71,0.95) 970 • I would feel nervous operating a robot in front of other people. (0.02,0.84,0.06) 971 • I would hate the idea that robots were making judgements about things. (0.58,0.58,1.0) 972 • I would feel very nervous just standing in front of a robot. (0.26,1.0,0.26) 973 • I feel that if I depend on robots too much, something bad might happen. (0.71,0.99,0.78) 974 • I am good at working with robots. (0.39,1.0,0.39) 975 • I would feel paranoid talking with a robot. (0.98,0.58,0.68) 976 • I am concerned that robots would be a bad influence on children. (0.21,0.34,0.95) 977 • I feel that in the future society will be dominated by robots. (0.58,0.94,0.78) 978 Most robots make poor teammates. (1.0,0.96,0.96) 979

960 961

962

963

- Most robots possess adequate decision making capabilities. (0.16,0.37,0.85)
- Most robots are easy to understand. (0.8,0.34,0.7)

B.1.3 Attitudes Towards Sawyer. This section of questions pertained to the participants' initial
impression of the Sawyer robot. All questions are on a 7-point Likert scale. 1 was the adjective on the left, 7 was the adjective on the right. p-values in this section are based on the difference between pre- and post-activity surveys.

- I [blank] Sawyer. (Like/Dislike) (0.89, 0.97, 0.97)
- Sawyer is: (Unkind/Kind) (0.006, 1.0, 0.44)
- Sawyer is: (Ignorant/Knowledgeable) (0.07, 1.0, 0.07)
- Sawyer is: (Incompetent/Competent) (0.29, 0.92, 0.15)
 - Sawyer is: (Unintelligent/Intelligent) (0.59, 0.98, 0.47)
 - Sawyer is: (Foolish/Sensible) (0.31, 0.67, 0.07)
- Sawyer is a(n): (Individualist/Team Player) (0.66, 0.03, 0.15)
 - Sawyer is: (Unlikeable/Likeable) (0.1, 0.9, 0.2)
 - Sawyer is: (Unfriendly/Friendly) (0.53, 0.7, 0.16)
 - Sawyer is: (Stubborn/Agreeable) (0.04, 0.52, 0.29)

998 999 B.2 Inter-Round Survey Questions

Other than the first question, which asked participants to select the round they had just completed, questions were on a 7-point Likert scale, and values for 1 and 7 are indicated in the form (adjective for 1 / adjective for 7) p-values in this section are written in the form (optimal r1/r2, optimal r1/r3, optimal r2/r3, median r1/r2, median r1/r3, median r2/r3, PACT r1/r2, PACT r1/r3, PACT r2/r3)

1004 • Round 1005 1

2

3

1005

1008

1009

1010

1011

1012 1013

1014

1015

1017

1018

1019

1020

1023

981

982

988

989

990

992

993

995

996

997

- 1007
 - How mentally demanding was the task? (Very Low Mental Demand/Very High Mental Demand) (0.9, 0.9, 0.9, 0.83, 0.9, 0.9, 0.9, 0.9, 0.9)

 - How hard did you have to work to accomplish your level of performance? (Very Low Effort / Very High Effort) (0.72, 0.9, 0.8, 0.83, 0.9, 0.9, 0.75, 0.9, 0.9)
 - How discouraged, irritated, stressed, and annoyed were you? (Very Low Frustration / Very High Frustration) (0.67, 0.53, 0.9, 0.82, 0.82, 0.9, 0.84, 0.9, 0.9)
 - I was confident that Sawyer would choose the same block that I chose. (Very Low Confidence / Very High Confidence) (0.78, 0.56, 0.23, 0.9, 0.09, 0.17, 0.75, 0.16, 0.48)
 - I understand how Sawyer was choosing blocks. (No Understanding / Complete Understanding) (0.79, 0.79, 0.44, 0.85, 0.65, 0.36, 0.82, 0.42, 0.75)

1021 B.3 Post-Activity Survey

¹⁰²² Listed p-values are of the form (conventions/median, conventions/optimal, median/optimal).

B.3.1 Game Comprehension. These questions concerned participants' understanding of the game.
 All questions are on a 7-point Likert scale. Value labels were Strongly Disagree (1) and Strongly
 Agree (7) unless otherwise stated.

- I understood the rules of the game. (0.9, 0.9, 0.9)
- I used the previous selections shown on the tablet to make my decisions. (0.28, 0.9, 0.44)
- 1028 1029

- I knew things about the game that Sawyer didn't know. (0.9, 0.37, 0.32)
- I understood the goal of the game. (0.9, 0.81, 0.86)
- I kept track of our score at each turn. (0.9, 0.9, 0.9)
 Sawyer knew things about the game that I didn't ki
 - Sawyer knew things about the game that I didn't know. (0.79, 0.9, 0.79)
- How much did your team's score influence the decisions you made? (No Influence / Score Was the Only Influence) (0.66, 0.54, 0.9)

B.3.2 Attitudes Towards Sawyer. The questions in this section were identical to those asked in the same section in the Pre-Activity Survey.

B.3.3 Team Fluency and Performance. These questions concerned participants' perceptions of
 their team. All questions are on a 7-point Likert scale. Value labels were Strongly Disagree (1) and
 Strongly Agree (7) unless otherwise stated.

- The robot and I contributed equally to the success of the team. (0.9, 0.6, 0.74)
 - Working with Sawyer was stressful or frustrating. (0.31, 0.67, 0.75)
- I am responsible for the team's score. (0.9, 0.9, 0.9)
- The team worked fluently together. (0.24, 0.07, 0.82)
- I helped the robot accomplish the task. (0.9, 0.24, 0.46)
 - The team's coordination improved over time. (0.9, 0.02, 0.04)
- The robot was cooperative. (0.26, 0.47, 0.87)
- The robot is responsible for the team's score. (0.75, 0.41, 0.14)
 - If I were a robot, the team would have scored better. (0.9, 0.59, 0.61)
- The robot perceived accurately what I was trying to do. (0.9, 0.72, 0.86)
- I am good at working with robots. (0.53, 0.82, 0.24)
- I contributed more to the success of the team. (0.83, 0.26, 0.59)
- Working with Sawyer was difficult. (0.74, 0.25, 0.66)
 The relational Lynne working toward the same real
 - The robot and I were working toward the same goal. (0.9, 0.9, 0.9)
 - The robot helped me accomplish the task. (0.9, 0.36, 0.58)
- Sawyer is good at working with humans. (0.41, 0.56, 0.9)
 I find what I am doing with the rebet confusing (0.0, 0.0)
 - I find what I am doing with the robot confusing. (0.9, 0.9, 0.9)
- I was a good teammate to Sawyer. (0.075, 0.041, 0.9)
 There was a team leader (True/False multiple shoirs)
 - There was a team leader (True/False multiple choice) (0.77, 0.9, 0.9)
 - If there was a team leader, who was the team leader? (If there was no team leader, skip this question) (Sawyer/Me) (0.56, 0.56, 0.56)
 - The robot contributed more to the success of the team. (0.86, 0.56, 0.29)
 - Over time, the way I selected blocks changed. (0.9, 0.37, 0.35)
 - Who is more responsible for the team's success or failure? (Sawyer / Me) (0.79, 0.9, 0.82)
 - Sawyer was a good teammate to me. (0.11, 0.04, 0.9)
 - I would have scored better if my teammate was human. (0.018, 0.004, 0.9)
 - I would work with Sawyer again. (0.35, 0.06, 0.66)

B.3.4 Robot Predictability and Understandability. The questions in this section relate to the partici pant's understanding of the robot and how predictable they found the robot. All questions were on
 a 7-point Likert scale from Strongly Disagree to Strongly Agree unless othwerwise indicated.

- Sawyer was unpredictable. (0.9, 0.014, 0.0395)
 I understood why Sawyer made the decisions it did. (0.63, 0.0235, 0.18)
 The way Sawyer selected blocks was unclear to me. (0.35, 0.0078, 0.2)
 I could easily predict what block Sawyer would pick next. (0.31, 0.0078)
 - I could easily predict what block Sawyer would pick next. (0.31, 0.0078, 0.24)
 The way Sawyer picked blocks made sense to me. (0.39, 0.0069, 0.16)
- 1077 1078
- ACM Trans. Hum.-Robot Interact., Vol. 0, No. 0, Article 0. Publication date: 2023.

0:22

1042

1043

1056

1061

1062

1063

1064

1065

1066

1067

1068

- As the game progressed, I was more easily able to predict which block Sawyer would pick next. (0.9, 0.001, 0.001)
 Sawyer's decisions didn't make sense. (0.64, 0.07, 0.39)
 Sawyer picked the best block for the team. (0.07, 0.16, 0.85)
 Sawyer chose blocks randomly (0.24, 0.001, 0.008)
- Sawyer chose blocks randomly. (0.24, 0.001, 0.008)
 Most people would be able to understand how Sawyer made deependent of the same service of the sam
 - Most people would be able to understand how Sawyer made decisions. (0.17, 0.01, 0.47)
- I chose blocks (intuitively / analytically) (0.63, 0.24, 0.045)
- Fill in the blank: By the end of Round [blank] I could easily predict which block Sawyer
 would pick next. (multiple choice)
- 1088
 1

 1089
 2

 1090
 3
- 1091 None

1093 B.4 Round 4 Survey

For this survey, participants were shown 5 novel game boards and were asked the same set of multiple choice questions for each of them. Participants were instructed not to guess, and to select "unsure" if they were not totally certain about their answer.

1097 Which color is the block Sawyer will pick first? 1098 blue 1099 red 1100 vellow 1101 unsure 1102 Which shape is the block Sawyer will pick first? 1103 circle 1104 triangle 1105 square 1106 unsure 1107 Which color is the block Sawyer will pick last? blue 1108 1109 red 1110 vellow 1111 unsure 1112 Which shape is the block Sawyer will pick last? 1113 circle 1114 triangle 1115 square 1116 unsure 1117 Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127